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Synopsis

A basic problem in population dynamics is that of finding criteria for the long-term coexistence of
interacting species. An important aspect of the problem is determining how coexistence is affected by
spatial dispersal and environmental heterogeneity. The object of this paper is to study the problem of
coexistence for two interacting species dispersing through a spatially heterogeneous Tegion. We model
the population dynamics of the species with a system of two reaction-diffusion equations which we
interpret as a semi-dynarnical system. We say that the system is permanent if any state with all
components positive initially must ultimately enter and remain within a fixed set of positive states that
are strictly bounded away from zero in each component. Our analysis produces conditions that can be
interpreted in a natural way in terms of environmental conditions and parameters, by combining the
dynamic idea of permanence with the static idea of studying geometric problems via eigenvalue
estimation.

1. Introduction

A basic problem in population dynamics is that of finding criteria for the
long-term coexistence of interacting species. An important aspect of the problem
is determining how coexistence is affected by spatial dispersal and environmental
heterogeneity. The object of this paper is to study the problem of coexistence for
two interacting species dispersing through a spatially heterogeneous region. We
model the population dynamics of the species with a system of two reaction—
diffusion equations which we interpret as a semi-dynamical system. There are a
number of ways of characterising coexistence; here we shall use the criterion of
permanence. A system is said to be permanent if any state with all components
positive initially must ultimately enter and remain within a fixed set of positive
states that are strictly bounded away from Zero in each component (for further
clarification, see Corollary 3.7 and Remark 3.8).

The advantage of the idea of permanence is that it provides a criterion for
long-term coexistence that does not require 2 complete knowledge of the
dynamics of the system. Since our models have infinite dimensional phase spaces,
we can almost never hope to describe their dynamics completely. Furthermore,
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the conditions for permanence do not impose many restrictions on the interac-
tions of the species under consideration. Hence, permanence allows us to consider
competition, predation and other more complicated forms of density-dependent
interaction from a unified point of view. The specific hypotheses implying
permanence involve the stability of equilibria where the density of at least one
species is identically zero. The stability properties of such equilibria are
determined by the principal eigenvalues of elliptic partial differential operators
obtained through linearisation. Since the eigenvalues of elliptic operators depend
on the coefficients and the geometry of the underlying spatial domain in a fairly
direct way, they provide a natural method of quantifying the effects of spatial
variation. » , '

The idea of modelling the dynamics of interacting populations with a system of
nonlinear differential equations dates back at least to the pioneering work of
Lotka and Volterra in the 1920s. The idea of using diffusion to model the spatial
dispersal of alleles in population genetics was introduced by Fisher in the 1930s
and applied to population dynamics by Skellam and others in the early 1950s.
Currently, reaction-diffusion systems are some of the most widely used models
for population dynamics or genetics in situations where spatial dispersal plays a
significant role. The history and derivation of such models are discussed in [11,17,
28, 34]. The models we consider have the form ‘ -

%‘ti'm,. Aw+wf(nu) nQXR, (i=1,2) RS
with u; =0 or du;/dv =0 on dQ X R,, where Q<R"” is a bounded domain. For
our applications we are interested in m =1, 2, or 3 only, but some of our results
on reaction-diffusion systems are stated in more generality. The variables u;
represent population densities of the interacting species. The boundary condition
u; = 0 describes a situation where crossing the boundary of Q is lethal to members
of the ith species; the condition du,/dv =0 corresponds to the boundary of Q
acting as a barrier. It turns out to be very useful to view (1.1) as a semi-dynamical
. system; in particular, such a viewpoint allows us to use the idea of permanence. A
general discussion of how reaction—diffusion equations give rise to semi-
dynamical systems is given in [21]; a more detailed analysis which is well suited to
the problems we consider is given in [33]. ;

There are several ways in which coexistence can be interpreted. One simple
characterisation is to require (1.1) to have a componentwise positive equilibrium
which is a global attractor for non-trivial non-negative solutions. Such an
approach -works fairly well for a single reaction-diffusion equation (see for
example [8]), but is not well suited to the analysis of-systems since even classical
Lotka-Volterra competition models may admit multiple steady states in the
presence of diffusion [4, 9, 12], and the problem of finding and analysing the
equilibria for more complicated interactions is quite difficult. In addition, from a
biological point of view, it is probably inappropriate to require that orbits tend to
a single steady state. The criterion of permanence in the context of zero Dirichlet
conditions requires the existence of a fegion U={(u,, ) v Su, S wy,
V2 Su; =wyb with v, v1,>0 on Q and v, /dv, du,/dv<0 on JQ such
that all solutions with non-trivial, non-negative initial data are attracted to U.
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Another interpretation of permanence is that the boundary of the positive cone
in a space where our model generates a semiflow must act as a repeller. The
significance of such an interpretation is that to establish permanence we need
a detailed knowledge of the dynamics of our system only in or near the boundary
of a positive set, which can be arranged to consist of states in which at most
one species is present. Since multiple coexistence states, periodic orbits and more
complicated dynamics are permitted when both species are present, the idea of
permanence turns out to be biologically realistic as well as mathematically
tractable. An interesting discussion of the role and history of the idea of
permanence in population dynamics, genetics and evolutionary theory is given by
Hofbauer and Sigmund in [23]. Permanence and/or related criteria for coexis-
tence are discussed in [3, 7, 20] and the references therein. Some aspects of such
ideas in the reaction—diffusion context aré discussed in [16, 26].

The conditions we obtain for permanence involve the principal eigenvalues of a
class of elliptic problems that has already been considered in establishing the
existence (but not stability) of coexistence equilibria in [4,9,29, 31]. Specifically,
suppose that the population of the first species has a positive equilibrium i, in the
absence of the second species; then a typical condition for permanence would
involve the principal eigenvalue o, of the problem

1pAd +fx, @1, 00 =0 0O, (1.2)

with boundary conditions on ¢ corresponding to those on u,. Giving 2 criterion
for permanence in terms of such eigenvalues is of interest from both the
mathematical and biological points of view. On the mathematical side, the con-
ditions for permanence aré close to those used previously t0 establish the ex-
istence of a coexistent equilibrium state (as in [4, 9]), as opposed to the stronger
conditions used to establish long time coexistence by proving the uniqueness and
stability of such a state (as in [10, 12]). We shall prove that permanence actually
implies the presence of a coexistent equilibrium (possibly unstable) for (L.1).
Similar results for other models are obtained in’ [25]. From the biological
viewpoint, it is interesting to find conditions for permanence based on eigenvalues
of problems such as (1.2), because those eigenvalues can often be estimated in
ways that yield biologically useful information about the effects of various
parameters describing the environment, the populations, Or their interactions.
Sections 2-5 of this paper are devoted to the application of the idea of
permanence to models such as (1.1). Those sections are arranged roughly in order
of decreasing abstraction and generality. Section 6 explores the connections
between permanence and the existence of coexistence equilibria, and Section 7
gives a summary of our results and their biological implications. In Section 2 we
provide the necessary terminology and background information on semiflows and
abstract permanence. The ideas are related to those discussed in [20, 24, 26, 271.
Section 3 describes how reaction—diffusion systems such as (1.1) can be
interpreted as generating semidynamical systems in the spirit of [21, 33]. To apply
the abstract ideas of Sections 2 and 3 to specific biological models, we must
establish that the semiflows they generate are dissipative on the positive cone of
an appropriate space and possess average Lyapunov functionals implying that
boundary of the positive cone acts as a repeller. The problem of dissipativity is
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discussed in Section 4. For most of our models, it is easy to establish dissipativity

via standard comparison theorems based on the maximum principle, but for one

of Section 4 and 5 impose some structure conditions on the interaction terms f,
but they are relatively weak. In particular, we may take f(x,u,, uy) =
my = by uy ~ byyu,, e uy, u)=m, + bauy —bypu, with biu>0, by, by,
by =0 for all x and m; >0 for some x. Hence, we can treat many class--
ical models for ecological interactions,. (Our results also apply to many other
specific forms of interactions.) In Section 6 Wwe return to a fairly general viewpoint
and show that permanence mplies the existence of a coexistent equilibrium. The
approach is based on an asymptotic version of the Schander fixed point theorem .
as in [25]. Finally, in Section 7 we review our results and discuss their connections
with other work and their biological interpretation. o

2. Semiflows

In this section we establish our terminology and present the central results from
the theory of semiflows which will be used in treating permanence.

Let (¥, d) be a metric Space, points in ¥ being denoted by u,v,... and subsets
of Yby U, V,.... The following two unsymmetric distances of sets will be used:

d(U, V) = sup du, V),
. uel
d(U, V)= inf d(u, V).
: uell/ :

The triple (Y, n, R.) is said to be 3 semiflow if n: ¥ x R,—VYis continuous and
satisfies: '

(D) 7(u, 0) =4y,

() #(m(u, 1), s) = w(u, t+5) (s, te R.),
for all ueY. For convenience, we often write (u,t)=u.t The symbols y*(u)

assured, so an assertion as to existence {for example in Theorem 2.1 below) is a
strong restriction on the semifiow with wide ranging consequences, ‘
A set U is said to be forward invarian: if y*(U)e U and invariant if y(U) <y,
The semiflow is said to be dissipative if there is a bounded set U such that
limd(u.t, Uy=0 forall ue Y. Uis said to be a global attractor if it is compact
r—x ; .

invariant and lim dw. i, U) =0 for all bounded V.,
o
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Tueorem 2.1 [20]. Let Y be complete and Suppose that the semiflow IS
dissipative. Assume that there is a o =0 such that n(+, t) is compact for t >to. Then
. there is a non-empty global attractor, A say.

Consider next the concept of permanence in the abstract semiflow context. We
suppose that y =Y, U 9Y,, where Y, is open, and assume that Yo, JY, are forward
invariant. In relation to the remarks in the introduction, dYo will consist of the
states with at least one species jdentically zero.

DEFINITION 2.2. ‘The semiflow is said to be permanent if there exists a bounded set
U with d(U, 3Y0)>0 such that limd(v. 1 U)=0 for all ve Yo
I

oy S

We can now give the following definitions and theorem from [20]. Aset U Yo
is said to be strongly bounded if it is bounded and d(U, 9Yo)>0. o is said to be
a global attractor relative to strongly bounded sets if it is a compact invariant
subset of Y, and lim d(U.t, do)=0 for all strongly bounded U. '

fomp

THEOREM 2.3. Assume that the conditions of Theorem 9.1 hold, and let Y, and
9Y, be defined as above. Then if permanence holds, there are global attractors A,
A, for Ty (thatis @ restricted to 8Yy), and a global attractor A relative to strongly
bounded sets.

Permanence is obviously an asymptotic property. It can thus be studied by
examining the semiflow restricted to a forward invariant set derived from an
g-neighbourhood B(s4, €) of the global attractor s of Theorem 2.1. Set then
X = cln(B(H4, &), [1, w)), and take §S=XNaY In the next section, it will be
shown that X is compact in the context of the present investigation. The following
theorem [24] is the basic tool that will be used here for establishing permanence.

THEOREM 2.4. Assume that the conditions of Theorem 2.1 hold, and let X, S be
as defined above. Suppose that P: X\S—>Ris continuous, strictly positive and
bounded, and for u e S define

P(v. ' |
(t, u) =lim inf (%%f) : @2.1)
veX\S
Then the system is permanent if
(1 ueo(S) (2.2a)
>
sup a(t, ) {0 ueS. (2.25)

3, Basic results for the reaction—diffusion system

After describing in detail the conditions on the model, our first task in this section
is to show that the solution generates semiflows on appropriate subsets of the
Banach spaces [C*)? for k= 0,1, and that the compactness required for Theorem
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2.1 holds. We shall then examine the concept of permanence in more detail and
show how the relatively weak condition of Definition 2.2 can be strengthened.
Consider the following initial/boundary value problem: ‘

ou; .
-:9%=,u,-Au,-+u,-ﬁ(x,u) onQXR, (i=1,...,n),

3.1
ou;
u,-],m=0 <0r5=0> on JQXR,,

u(x, 0) =uy(x) onQ,

where u = (u, ..., u,). We shall impose the following condition on the system:
(H1) (a) w;>0fori=1,...,n, :
(b) Q=R is bounded and open, with 4Q uniformly C3** for some a > 0,
(©) ffQXRL—>Ris C*jointlyinx and u fori=1,...,n.
Some of our results are valid under weaker hypotheses, which are in some cases
stated in the relevant sections of the paper. In particular, the smoothness
conditions on f; may often be weakened; (H1)(c) is sufficient for all results. The
results we obtain are derived from [33], and we may remark that spatial
dependence may be introduced into the diffusion quite easily. For example,
. instead of Au we may treat .
V. (K(x)Vu)

where K is diagonal, k; e C***(Q) for some a >0 and the k;; are bounded below
away from zero. Finally, with minor amendments, the theory in this section
extends to more general boundary conditions. ' '

As usual C*(Q) for k=0, 1 will denote the Banach spaces of continuous and
once continuously differentiable functions, respectively, with the sup norm on the
functions and derivatives when appropriate. The norms will be denoted by |||,
and the closed subspaces of functions vanishing on 9Q by CKQ). Ck(Q) will
denote the positive cone with respect to the usual ordering.

As usual, the key step is showing that there is an operator A derived from —A
which generates an analytic semigroup. Then A also generates an analytic
semigroup, where A is the diagonal matrix with A’s along the diagonal. The next
result follows from [33]; the precise specification of the domain of A is not needed
here. For further details, see [33]. For a Banach space E, E will denote the usual
fractional power spaces, with norm ||| gs. (See [21], for example.)

Lemma 3.1. Suppose (H1)(b) holds. Then there is an operator A derived from
—A which” generates an analytic semigroup on [CHQ)]" for k=0,1. With
E=[CKD)Y, .

Ef o [CEH Q)
forq=0,1and 2B >q. o

Proof. This is derived from [33, Theorem 2.4], and the references below are to
[33]. (H1) and the remarks following are (M4,) on p. 27 with s =1. The spaces
Cy(C in Mora’s equation) are defined on p- 33 (equation 2.5). The necessary
technical conditions on these spaces are verified in [33, § 3], and Lemma 3.1 then
follows from [33]. O ‘ ‘
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The following abstract
fairly standard.

differential equations are

Lemma 3.2. (i) Consider the linear differential equation

%% +Au=g() ( >0),

1(0) = uq.

Assume that uge E=E’= [CY
EP (t>0), and given t,>0 there exist My(to), Ma(to)

@7, &0, °)— E with Sl[lp)“g(s)]|50<°°. Then
sel0,®

if B<1, we have u(f)e

depending only on ty such that for t Ztq,
(Ol e = M, (to) lluoll v + M, (to) SZ‘[{)PQC) g E% (3.2)

(if) Consider the differential equation

du
— _
m Au = £(u),

bounded sets into bounded sets.

where £ E — E is locally Lipschitz and maps v e/
tants k, ¢ (depending on U ) such that

Then given U < U bounded, there are cons
for Uy, VpE U
() — vl e =k o~ voll o e”
so long as u(t), v() € 0.

(i) We write the equation as an integral equation
AP to obtain the following:

Proof. in the usual way, and
then apply

N ()l e = 1 APU() 20

. '
< AR Mgl + | | APAg(s) ds
0 E®

<C g - t  —&(t=5)
< it ol + sup, 18O !

0

where a standard estimate || APe~A1|| = Cpt~Be® for the operator has now been

used — see [21, Theorem 1.4.3).
(ii) The proof is similar to s
used. O

tart with, and then a Gronwall-type inequality is

We assume the following a priori bounds:
(H2) Uniform boundedness. Given a >0, there exists B(a) such that

IROIEELES @l = B(a) (t>0).
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(H3) Dissipativity in [CY(Q)]". There exists y such that given uoe[CY(Q)]",
there is a t(i,) such that ||u(f)|| 0= v (£ = t(ug)).

THeoREM 3.3. Let (H2) and (H3) hold. Then the reaction—diﬁ”usion system (3.1)
generates a semigroup on [CY(Q)]", and its restriction to [CYQ)]" is also a
semigroup. Dissipativity in [C)Q)]" holds. Also n(-, 1) is a compact operator on
[CHQ)]" for every t>0. There is a bounded set U, in [C*(Q)]" such that if
U= [CNQ)]" is bounded, then U.t< U, for t=1.

Proof. The boundedness in (H2) ensures existence for ¢ >0, see [21, Theorem
3.3.4]. Continuity of the solution in ¢ of course holds (by the definition of
solution). Lemma 3.2(ii) with U = B(0; &) and U = B(0; B(a)) from (H2) shows
that the solution is actually Lipschitz in the initial condition, and so joint-
continuity follows. Also, backward uniqueness holds, see [18, Thm. 4.1]. .

Take now a bounded subset U, of [C3(Q)]". We apply Lemma 3.2(i) treating
the reaction term in (3.1) as known. The uniform boundedness ensures that for
u e Uy, ||u| o= B(U,) for some constant B(U,), and as f is continuous, there is a
constant B,(U,) such that ||g(u)|| go= [|uf(u)| z0 = B,(U,). Hence from (3.2), there
is a constant m(t,, U,) with

lu@®l e =mto, Up) fort>ty,

for B<1—¢ and any €e(0,1). Take next g=1 in Lemma 3.1, gettmg
EP & [CHQ)]" for B > 1. This yields a constant m;(ty, Up).

lu(@®)ller = my(t, Uo) for t> 1. N (3.3)

As dissipativity holds in [C)(Q)]", dissipativity in [C}(Q)]" follows.

We now broadly repeat the argument, this time taking E = [C}(Q)]". Take any
bounded U, =[C§)]". Then local existence holds from the standard theory, and
from results of the previous paragraph global existence follows (as there is a C’
bound for ¢ Zt;). Hence, by Lemma 3.1, 7 restricted to [C}(Q)]" is a semigroup.
Use Lemma 3.2(i) again in E, restarting the flow at #,. By (3.3) there is a bound in
E for t = t,, and a [C*(Q)]" bound follows for t > 2t, from the E? bound and the
embedding result of Lemma 3.1. ]

CoroLLARY 3.4. There is a global attractor A in [CHQ)]". The set
X =cln(B(, €), [1, ®)) is compact in [C(Q)]" and forward invariant.

Proof. The first statement follows from Theorem 2.1 and Theorem 3.3. The
compactness is from the last statement of Theorem 3.3. [

Remark 3.5. It follows from the strong maximum principle (see [18, 35, 37])
that if wu;(x,0)=0, u;(x,0)#0 then u;(x,£)>0 on Q (and under Dirichlet
_ boundary conditions du;/dv <0 on Q) for all t > 0. Hence, if (uy, us, ..., u,)eX
is also in the boundary of the positive cone, we have ;=0 in Q for some i It
turns out that the strong maximum principle has further 1mphcat10ns regarding
permanence, which we explore in the next result.

The tactic in the next sections will be to use Theorem 2.4 to establish
permanence. This will ensure that for solutions with the initial value of no
component equal zero (i.e. u(0) e X\S), [li;(+, 1) ]| for each i is eventually greater
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than some fixed € > 0. However, this condition is not completely satisfactory from
the point of view of applications, as it does not preclude the possibility that
u(x, t) for some i should approach zero on “most” of Q. In fact we shall now
show that this is not possible, and such solutions are bounded uniformly below
rather strongly, in fact in the strongest sense that can be expected under zero
Dirichlet conditions. Let eeC?*Q) be such that e(x)>0 for xeQ and
de/dv < —v for x € 6Q, where y > 0. The solution of Ae = —1 with zero Dlnchlet
conditions is one possible choice.

LemmA 3.6. There exists g, @ e(0,©) such that for all uesd, (defined in
Theorem 2.3)

ee(x)Su(x)Sae(x) forxeQandi=1,...,n.

Proof. Since o, is invariant, given u e &, there is a v and a >0 such that
v.t=u. An obvious application of the strong maximum principle (see [37, p. 89,
Theorem 9.12 and Corollary 9.14] or [35, Theorem 3, p. 170]) shows that u(x) >0
for xeQ, and that there is e(u)>0 such that Ju;/dn <—e(u) on 9Q for .
i=1,...,n (actually using also compactness of 9Q).

The upper bound in the above is obvious as &/, is a [C,(Q)]" bounded set.
Suppose then that the first inequality is false. Then there are sequences {u,} e o,
and {x,}eQ such that lim (u,);(x,)/e(x,)=0 for some i As sf, and Q are

compact, we can select convergent subsequences, which we continue to denote by
{(un)}, {x.}, and it follows that there exist u e &y, x €Q with (u,)i(x,)— u(x).
Clearly x ¢ Q, for as e(x) >0 it would follow that u;(x) = 0 which is ruled out by
the remarks above. Suppose then that x € /Q. Draw the tangent plane at x and
drop a perpendicular to it from x,,. Let it cut §Q at y,. Then this is “almost” the
normal to Q. It is thus clear that there is a 8, > 0 such that

ui(xn) = ui(xn) - ui(Yn) =y ch lxn -ynl-

Since e(x,) = B; |x, — y,| for some B,, there is a B >0 such that u;(x,)/e(x,) > B.
We need to show that |[((&,);(x,) — ui(x,))/(e(x,))|— 0. This is a consequence
of C! convergence, from which we see that as n— »,

| (n)i(xn) = (4n)i(¥n) _ ui(xn) — ui(yn)
Xn = Yn Xn ™ Yn
and the result-follows easily.
The last step is to write

(un)i(xn) _ (un)i(xn) - ui(xn) + ui(xn)

et | e() | e(m)

by which the result follows from the conclusion of the previous two
paragraphs. [J

-0

CoroLLARY 3.7. Suppose permanence holds in [Cy.(Q)]". Then there is a B>0
such that given any u ¢ S, there is t(u) such that

ui(x, )= Be(x) fortzt(u), xeQ, andi=1,...,n
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Proof. This follows from the preceding lemma and Theorem 2.3 upon using
convergence in [CH(Q)]". O

Remarks 3.8. We shall sometimes also treat cases where some component (or
components), say u;, satisfies a zero Neumann condition. In that case a simplified
version of the above argument shows that for a component u; satisfying Neumann
boundary conditions the inequality u; (x, t) = Be(x) above may be replaced by
uix,t)zpBfort=t(u) andx e Q.

4. Dissipativity

In this section we shall establish that the dissipativity hypotheses of the abstract
results from the previous section are satisfied by a number of systems modelling
ecological interactions with diffusion. The lemmas on dissipativity are proved via’
fairly standard methods such as invariance principles and comparison theorems
for differential inequalities. For one class of systems a variation on a method of
Alikakos [1] is used. We shall use without specific reference the observation that
local existence plus L™ a priori bounds yield global existence in the context of the
systems we study; see [1, 2, 21, 27, 33] for further discussion. :
We shall consider systems of the form

3 ' .
'6—L:!= i Au,' -+ u.,-ﬁ(x, Uy, le) in Q, i = 1, 2, . (4-1)

where Q< R”" is a bounded domain with smooth boundary, and we shall impose
either homogeneous Dirichlet or Neumann boundary conditions. We shall always
.assume that the functions f; are at least locally Lipschitz in x, u, and u,. Since
some of the results may be of independent utility, they are stated under weaker
hypotheses than those required for the full semidynamical system formulation of
Section 3. In all our models, 4, and u, represent population densities and we
consider only models in which the first population is self-limiting. We allow a
variety of dynamics for the second population so that we can model both
competition and predator—prey interactions, among others.

Our initial observation is .that solutions of (4.1) under our smoothness
hypotheses on the functions f; and the domain Q will in fact be classical; that
follows from the Schauder estimates for parabohc equations, as discussed in [19].
The next observation is that the first quadrant is always a positively invariant
region for (4.1) and in fact if u,(x, 0) =0, w;(x, 0) # 0 then w;(x, t)>0 in Q for all
t>0 such that u, and u, remain finite. The forward invariance of the first
quadrant follows immediately from invariant set theorems such as those of [36] or
[37], or could be established directly via the maximum principle. The strict
positivity on the interior of Q follows from the strong maximum principle, since
once we have a solution pair (i, tis), each of the equations in (4.1) may be
viewed as a linear scalar equation with =zero order coefficient

filx, uy(x, i), 15(x, 1)).
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The key step in establishing dissipativity is that of showing that any solution
(1,, 1) must satisfy a uniform bound of the form 0= u; = K for some constants
K;, i =1,2, within finite time. The smoothing properties of the semiflow then
imply dissipativity in C'(Q). In fact, if (4.1) is simply viewed as a parabolic
system, then solutions which belong to C'(Q) must have Hélder-continuous
second derivatives on Q because of the Schauder estimates for parabolic
equations (see [19]). Thus, we may use maximum principles to obtain a priori
bounds, even though we will ultimately want to view our semiflow as acting on
Cc'(Q). ‘

To obtain bounds for u, and u,, we shall first impose conditions on f; leading to
a bound for u,, and then consider some weaker conditions on f;, which then yield
an asymptotic bound on u,.

Lemma 4.1. Suppose that there exists a Lipschiiz» function F(u,) such that
sup{fi(x, 1y, uz): x €Q, u, Z 0} = Fu,) (4.2)
for all u, =0, and for some M,, |
F(u) <0 if u;>M,. (4.3)

If (uy, uy) is a solution of (4.1) for t<(0, T under homogeneous Dirichlet or
Neumann boundary conditions and with non-negative initial data, then 0=u, =y
on (0, T] where y satisfies ’

%:yﬂ(y), y(0) = y, = sup {u,(x, 0): x e Q}. (4.4)

If Mi>M, and (u,, u,) is a solution of (4.1) for all t>0 then u, =M, for t
sufficiently large, and if u,(x, 0) = M, then u, =M, for all t >0.

Proof. We have already observed that u,,u,=0 on (0, T}. Inequality (4.2)
implies that

au ou
0-*—-8—{1— wy Auy —uy fi(x, uy, Uz)g“l‘?‘;l'" By Buy —u F(uy). (4.5)

Thus, u, is a subsolution and y is a solution to the scalar parabolic problem

; ] :
—5— wiAu—uFu)=0 inQ.

If u; satisfies homogeneous Dirichlet conditions on dQ X (0, 7], then u; =y on
dQ X (0, TT; if u; satisfies homogeneous Neumann conditions, we observe that y
does so as well. In either case we have u; =y on Q for re(0, T'] by standard
comparison principles for scalar reaction—diffusion equations (see for example
[17, 37]). By (4.3) and the structure of (4.4) we have that the interval [0, M,] is
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forward invariant and is in fact a global attractor for all non-negative solutions of
(4.4). Any solution of (4.4) will thus exist globally and be smaller than M, for ¢
sufficiently large. If (u,, u,) is a global solution of (4.1), then u; =y <M, for ¢
sufficiently large. If u,(x, 0) = M,, we may compare 1 with the solution of (4.4)
with y(0) = M, and draw the same conclusion for all t>0. [

Remark 4.2. The hypotheses on f; will be met by any function of the form

[, uy, 1) =ni1,(x) — by (x)uy — bia(x)u,,

with b, Zb,>0 and by, =Z0. Much more general forms of f; are also possible; in
particular f; need not be monotone in either variable.’ '

LemMMA 4.3. Suppose that f; satisfies the hypotheses of Lemuma 4.1 and that for .
any M >0 there exists a Lipschitz function F(u,, M) such that

sup {f(x, uy, w):xeQ, 0=u, = M}= Fy(up, M) o (4.65
and a constant M,(M) such that
Bz, MY<0 if u,>My(M). (4.7)

Under these hypotheses, any non-negative solution of (4.1) with homogeneous
Dirichlet or Neumann boundary conditions will exist for all t>0. If M, is as in
Lemma 4.1 and M3 > M,(M,), then u, = M, for t sufficiently large. If u,(x, 0) =M,
and u(x, 0) = Ms, then u, =M, and u, =M, for all t > 0.

Proof. If (u,, u,) is a solution of (4.1) on (0, T], then by Lemma 4.1 there is a
constant M such that u; =M on (0, T]. We may now compare u, to the solution
of

d N —
2%: yE(y, M), y(0) = yo = sup {uz(x, 0): x € O} (4.8)

as in the proof of Lemma 4.1, and conclude that u,(x, t) = y(z) on (0, T} By (4.7),
any non-negative solution of (4.8) must be global in ¢, so sup{y(t):0=t=T} is
finite, so that u, is bounded on (0, T]. Since the solution of (4.1) is bounded on
any finite interval in ¢, it must exist globally (see for example [2]). By Lemma 4.1,
we will have u; = M, for ¢ sufficiently large. Choosing f; so that u,(x, t,) = M, for
all x e Q, let y be a solution to (4.8) with M = M, and y(ty) = sup {ua(x, 1,): x € Q}.
Again we have u, =y for t >1,, and the interval [0, M5(M,)] is a global attractor
for non-negative - solutions of (4.8) with M = M,, so if M;> M,(M,) we have
u, =M, for ¢t sufficiently large. If we have u,(x,0)=M,, then by Lemma 4.1
=M, for all t>0, so we may compare u, with the solution of (4 8) wth
y(0) = M; an conclude that u, =y = M for all t>0. [

Remark 4.4. Lemmas 4.1 and 4.3 suffice to establish dissipativity fbr the system |
(4.1) if filx uy, uz) =my(x) = by (x)uy — ba(x)ue and  f(x, uy, up) =my(x) +
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by (x)uy — bzz(x)uz, where b,, and b,, are bounded below by posmve con-
stants and b,, is non-negative. The coefficient b,; could be of either sign or
could change sign in Q. Such dynamics correspond to the Lotka—-Volterra
models for competition or predator-prey interaction with both species subject
to logistic self-limitation. Of course much more general forms of interactions
will also satisfy the conditions of Lemmas 4.1 and 4.3. Lemma 4.3 does not
cover the case fi(x, uy, uz) = my(x) + by (x)u, with by, >0, which occurs in some
predator-prey models. To treat that sort of dynamics requires a separate argu-
ment.

LeMMmA 4.5. Suppose that the hypotheses of Lemma 4.1 are satisfied, that
folx, uy, uy) is bounded from above uniformly in x and u, if ||u, || is bounded, and
there exist positive constants a, B, and 7y and a continuous function f3(u,) such that

[, s, w5) + ¥1+ BuslfoCr, s, ug) + ¥] = fi(w1) (4.9)

for all x €Q, uy, u; 2 0. Under these hypotheses, any non-negative solution of (4.1)
with homogeneous Dirichlet or Neumann boundary conditions will exist for all
t >0, and there is a constant M; such that 0 = u, = Mj; for t sufficiently large.

Remark 4.6. To prove Lemma 4.5, we show that any solution u, must satisfy an
L' a priori estimate independent of the initial data after a finite amount of time.
We then use the L' bound to obtain an L™ bound. The method of obtaining the
L' bound is similar to that used in [16]. The L bound is derived by using ideas
due to Alikakos [1]. Specifically, we use [1, Theorem 3.1] and the following
related technical lemma:

Lemma 4.7. Suppose that u 20 satisfies

u=pAu+a(x, D in QX (0, ),

ou (4.10)
u—a—;éo on. 9Q X (0, «),

with a(x, t) locally Lipschitz in (x, t), and satisfying a(x, t) = A for some constant
A. Suppose also that there exist constants B, independent of u and E*(B,, u(x, 0))
such that in finite time |u|, = By and |u)|. = E*(B,, u(x, 0)). It follows that there
exists a constant B* independent of u such that |ull.=<B¥* in finite time. (Here
| |l, denotes the norm of L”(Q).)

Remark 4.8. Lemma 4.7 is a refinement of [1, Theorem 3.1] and has a similar
proof. Theorem 3.1 of [1] states that if u satisfies (4.10) and it is known that
llull; = B, then |Jul|== E*(B, u(x, 0)) for some E*. Such an estimate is sufficient
to establish global existence of solutions (see for example [1, 2]) but not sharp
enough to show dissipativity. Combining [1, Theorem 3.1] with Lemma 4.7 gives
conditions under which the uniform boundedness of solutions in L' after finite
time implies uniform boundedess in L™ after finite time.
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Proof of Lemma 4.7. The proof is essentially a reworking of the proof of [1,
Theorem 3.1]. Let

Ek=fu2*, k=0,1,2,....
Q

Then for t large we have

%5§~;L2"(2"-1)f uzk_2|Vu|2+2"f a(x, tu*
. |
e G e @11)

=-v f |V(u2“")12 + 2’<Afu2*

where v =2u. (See [1, equations (3.5)~(3.8)].) Also, we have for 0<g <3 and
any ve W'¥(Q) that ([1, equation (3.9)])

IwIZ=e [Vu[3+ Coe™0 u]i2, (4.12)

with C, depending only on n and Q, where n is the dimension of Q. From (4.11) .
and (4.12) with v =u*", we obtain ~

i‘jng/mmm + Coe PR (4.13)

Choosing £ <2v/(2+A) and setting £=¢, = 4 gy, we obtain —(v/g)+
24 = —4*(1 + A/2) + 2*A = —4* s0 that (4.13) ylelds

dft:"< —4*E; + C A DRES | (4.14)
where C, depends on Q, n, v, and A all of which are lndependent of u(x, 0).
We know that for large ¢, Ey=B, and ||ul.=E*(Bg, u(x,0)) so that
(E”‘)2 (where we replace the original bound E* on |lull. with |Q| E* if
IQI >1). We shall construct a sequence of bounds B, and show by induction that
E.=B, for all k if 1 is large enough. Let 8, = 2" 1j2%71. Then 6, = k + 28, and
8,/2¢ =37, j27 =2 for all k. Let B, =C}~ l22*"'40"2)&32 Choose t, such that
for all k,
(E*)¥ e~ = B, /2. (4.15)

(Notice that 8,/2* is bounded, so that B, = (B*)? for some B* and also that (4.15)
holds, if ty,=In E*—1InC, + 2"‘ InC,~In2— (n6;/2*"YIn4—In By +27%*'1In2,

which can. clearly be satisfied.) We can now perform the induction. Choose r*
large enough that for t=t* we have E, =(E *)* and suppose that for = t¥,

E,_ = B,_,. We have by (4.14) that, for t >r*,

d_df‘?'lﬁ = -4‘7E,; + C,4lna2lkg2
t

so that ‘ o
E, = C4WDkB2_ | 4 (E#)H =41, (4.16)
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For t = 1* + (to/2%), inequality (4.16) yields
Ek = C1(4)("/2)k_B%-._1 + (E*)Z"'e-—zkr“

, (4.17)
< C,(4)"*B}_, + By/2.

Also, Bi, = (22240 P08y 50 €4 B = CF 122 BT =
B,/2 and (4.17) implies Ex = B for 1= r*+tol2" (We have used 8, =
k +28,-, here.) This completes the inductive step, and since 'we have Eq= By
when t=t* for some ¥, we may conclude E, =B when FZ= Aty e 27
Hence, for ¢ >t* + 1, we have

]l = EV? = B =B* | (4.18)

for all k. (We have used the fact that 5,12 is bounded.) Since (4.18) implies a
uniform bound on the norm of u in 12 for any k, it yields the corresponding
uniform bound on [jul for £= . O :

Proof of Lemma 4.5. Let a, B, and 7y be as in (4.9) and let G = o (au, + Buz)-
We have : '

dG

”a't" = L (auy, + Bum)

= L(al-'vt Au, + Bpa Auz)
[ it i+ Pt )
~ | o+ pu)

= L fi(uy) —vG.

Since u, is uniformly bounded on its interval of existence by Lemma 4.1, we have
dGldt = Gy— ¥G for some constant Go. We may conclude that G is bounded, and
since u; is non-negative and bounded and u; is non-negative, the boundedness of
G implies the boundedness of u in LY(Q). 1t follows from [1, Theorem 3.1] and
the remarks following the proof of that theorem that u> is uniformly bounded in
L*(Q) on its interval of existence. Hence any solution must be global in time and
bounded in the L™ norm. By Lemma 4.1 wé have u, =M, when t is sufficiently
large for any global solution, sO for large enough ! (4.9) implies that we have
(dGld) =G~ vG with G, independent of (1), uz). We may conclude that
G=(G/y)+ G,e™ ", so that, for ¢ sufficiently large, G is bounded by a constant
not depending on the initial values of (i, u,). Since 0 =1, = M, for large 4, such a
bound on G implies that luzll, = By for some constant By independent of (1), U2), ‘
provided ! is large enough. Theorem 3.1 of [1] now implies that
luall== E*(Bos u5(x, 0)) for ¢ sufficiently large where E* is a constant depending
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on ux(x, 0). Since fi(x, u 1, U3) is uniformly bounded from above, u, satisfies the
hypotheses of Lemma 4.7 so we must have lluzll« = B* in finite time for some
constant B* independent of Uy, u,, We already know u; =0, so it follows that, for
tlarge, 0= u, = M, = B+, O

Remark 4.9, An example of the sort of situation where Lemma 4.5 is required
is the type of predator-prey model considered  'in [16]. In that case,

h=a—-bu, - cuy and f;= 4 +eu,. We shall allow all the coefficients to depend
on x, but require them to be bounded and assume that b, ¢ and 4 are ‘bounded

au,(fi +y) +Bux(fp+y) = ala = bu, + Ylu, + B(y —d)u,
+(Be = ac)u,u,.

To satisfy (4.9) we can choose « and B so that a/8 >supe/infc and y with
Y <infd. Hence Lemma 4.5 implies the desired dissipativity.

s. Average Lyapunov functions

In this section we accomplish the main task of this article, Namely, we construct
average Lyapunov functions so that Theorem 2.4 implies permanence for a large

of (4.1) with non-negative non-zero initial data in a given component will have
that component strictly positive in Q for ¢ >0; in the case of Neumann conditions,
such solutions will be positive on Q and for Dirichlet conditions they will have
normal . derivatives on 9Q which are bounded above by a negative constant.
Hence, the only trajectories which remain in the boundary of the positive cone
have one or both components identically zero. Thus, to determine the w-limit set
of the semifiow on the boundary we need only consider scalar equations, The
point (0,0) is always an equilibrium point. We shall impose conditions on the
interaction terms in our models so that the equation for each species in the
absence of the other has at most a single positive equilibrium point. The following
result may be obtained via the methods of [8] (see [8, Theorem 2.3]).

Lemma 5.1. Suppose that flx, u) is Lipschitz in x on O and continuously
differentiable in u with of[ou=0 for uzo, Fa,u)=S0ifuzye for some constant
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¢, and f(xo,0)>0 for some x,eQ. Let A{(f(xo,0)) be the prmczpal positive
eigenvalue for the problem

—~A¢d = Af(x, 0 in Q,
¢ =Af(x,0)¢ in 5.1)
- d=0 on .
The problem '

w,=pAu+flx,ulu on QX(0, ),

u=0 ondQ X0, ), (5.2)

has no positive steady state if w2 1/A{(f(x, 0)) and a unique positive steady state
ii which is a global attractor for non-trivial non-negative solutzons if n<i/

A7 (f(x, 0)).

Remark 5.2. The existence of the principal eigenvalue A (f(x, 0)) is shown in
[32]. The regularity assumptions on f may be relaxed somewhat for the purposes
of Lemma 5.1, but are needed to ensure the smoothness of solutions. In fact, we
need to assume that our nonlinearities are C? to utilise the abstract framework of
Sections 2 and 3. The condition that df/du =0 is used to establish uniqueness of
the positive steady state. Without that condition, there may be several positive
steady states. If all the other hypotheses on f are satisfied and p <1/A7(f(x, 0)),
then a permanence result could be obtained for (5.2) via the methods we shall
describe in the context of systems of the form (4.1). The condition
# <1/AT(f(x, 0)) is equivalent to the condition o,>0 where oy is the largest
eigenvalue for the problem

mAY + f(x, O = 0#/ in Q,

=0 on Q. (5:3)

The equivalence may be shown via positivity lemmas such as the one stated in
[22].

The case of Neumann boundary conditions is somewhat more complicated. If
faf(x,0)dx <0 then there is again a principal positive eigenvalue under
Neumann boundary conditions and Lemma 5.1 extends directly to that case. If
Jaf(x,0)dx=0, then (5.2) has a unique positive steady state which is an
attractor for non-trivial non-negative solutions for any w >0. The arguments
needed to establish these facts are to an extent analogous to those in the case of
Dirichlet boundary data. Consequently, in the interest of brevity, we omit them
from this article. However, we do feel that they are of sufficient interest, both
mathematically and biologically, to warrant inclusion in the literature, and hence
we shall include them in our subsequent article. -

In the case of predator—prey models without self-limitation on the predator, we
shall typically assume that fi(x, 0, #) <0, since otherwise we cannot expect the
predator density to remain bounded. In that case, the single species model (5.2)
with f(x, u) = fo(x, 0, 1) will have u =0 as the only non-negative steady state.

Our average Lyapunov functions will involve eigenfunctions of linearised
problems with the general form of (5.3) derived from the components of (4.1). If
we assume that the functions fi(x, 1), 0) and £i(x, 0, 1;) satisfy the hypotheses of
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Lemma 5.1 with w; <1/A{(fi(x, 0, 0)) for i =1, 2, then each of the problems
Wy =y Ay + filx, wy, Oy, in QX (0, oo);

5.4
_ u;=0 ondQX(1,»), (54)
and

uz, = ’Lz Auz +‘f2(.x, 0, uz)uz in Q X (0, w),

5.5
u; =0 on dQX (0, ), (5-5)

has a unique positive steady state it;, The same is true for Neumann boundary
conditions, except that if [fofi(x,0,0)dx=0 then the condition
wi <1/A{(fi(x,0,0)) is no longer needed. To construct average Lyapunov
functions in the case of Dirichlet boundary conditions, we shall use the positive
eigenfunctions ¢, and ¢, corresponding to the largest eigenvalues o, and o, of

23 A‘/’l +fl(x!'0: ﬁZ)'vl’; O'Fl’l in Q, (5 6)
“Yry=0 ondQ, )

and ‘ e ‘
“2A¢2+ﬁ(x’ﬁl30)¢2=0‘¢2 inﬂ’

5.7
Y,=0 on JQ, (57)

respectively. (The case of Neumann boundary conditions is treated similarly,
using the steady states and linearised problems arising from those conditions.)

THEOREM 5.3. Suppose that fi(x, u,, u,) and fi(x, u,, u;) are C* in all arguments
and satisfy the hypotheses of Lemmas 4.1 and 4.3 and that fi(x, u,,0) and
fi(x, 0, u,) satisfy the hypotheses of Lemma 5.1 with p; <1/A{(fi(x, 0, 0)). Suppose
also that fi(x, 0,0)Zfi(x, 0, i,) where i, is the positive solution of (5.5). The
semiflow on [CH(Q)]? generated by (4.1) under homogeneous Dirichlet boundary
conditions is permanent if the eigenvalues o, and o, of (5.6) and (5.7) are both
positive.

Remark 5.4. The condition fi(x, 0, 0) = fi(x, 0, iz;) is a weak formulation of the
requirement that the population modelled by u, either preys upon or competes
with that modelled by u,. The smoothness requirement is needed for the
application of the abstract results in Section 2 to systems as described in Section
3. ‘

Proof of Theorem 5.3. The hypotheses imply that (4.1) is dissipative and that
the w-limit set in the boundary of the positive cone consists of (0, 0), (iz;, 0) and
(0, it;). Thus we need only find an average Lyapunov function to conclude
permanence. Since the semiflow is dissipative, we may restrict our attention to a
bounded (in fact compact) absorbing subset X of the positive cone in [C(,(Q)]
that contains the global attractor whose existence is asserted in Theorem 2.1.
Recall that the construction of X in Section 3 was performed by allowing the
semifiow to act for a positive time on a neighbourhood of the attractor, so that X
is compact by the smoothing action of the semiflow and the intersection of X with
the boundary of the positive cone consists of states with at least one of u, and i,
identically zero. Let S denote the intersection of X with the boundary of the
positive cone. Choose eigenfunctions i, ¢, >0 for (5.6). (5.7). respectively, and
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define '
Biy B
P((vy, v2)) = (f v, dx) (f Yav2 dx)
e ° (5.8)
= exp [Bl logf Y, dx + B, IOEL 02 dx],
Q
where B, B, are positive constants. We have for (u;, u,) e S that
P((vy, v2):
alt, (uy, up)) = liminf LQ¥1v2) 1) (5.9)

(v va) (i1, 13) ‘P((UI, Uz)) ’
(ll],Uz)EX\S -

We need supe(t, (4, u,))>0 for (u,,u;)eS and supalt, (4, u;))>1 for
>0 >0

(uy, u) e w(S). Let (w,(r), wo(t)) = ((vy, v2) . t). Since our semiflow is on
X c[CNQ)]?, the functions v, and v, need not be twice differentiable in .
However, the semiflow is generated by a system of parabolic equations and the
smoothness assumptions on the nonlinearities imply that, for ¢ >0 solutions of the
partial differential equations are at least C% Computation using (5.8) yields '

%=GXP[31(IOEL%W1dxll"’IOgL‘//]Wl dx|0)

+ Bz(lOgL Yaw, dx|, - I'ngg Yaw, dxl(,)]

=exP[ﬁlJZ(L'/’:Wndx/Ll/th dx)
+B2fn' (L‘l’zwzzdx/j;l*l’zwzdx)]- | (5.10)

j Ywy, dx =f Y[y Aw, + f(x, wy, wo)w,] dx
Q o

We have for t >0

=L[(I~Ll Agw + f(x, wi, wa)dbyw] dx

= [ty =5 0@+ A i dx, (S511)

and similarly

J; Wowy, dx =L[0'2 - falx, iy, 0) ":fi(x; wy, wp) g, w; dx. (5.12)

Since X is bounded, o, - fi(x,0, i)+ fi(x, w;, ws) and o, - fi(x, i, 0) +
fa(x, wi, wy) are bounded below on X\S, so that the ratios (Jq ¥w; dx/
Jfaww;dx) are bounded below. It follows that P((v;,v,).)/P((v;, v3))
has a strictly positive lower bound since the expression inside the exponential
in (5.10) is bounded away from —2=. To see what happens as (v, vy)— w(S),
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we must examine how

31<L [0 — fix, 0, it2) + fi(x, wy, wo) g w dx/fg griwy dx)
+ Bz(L [o2 = fa(x, 5y, 0) + fox, w, w2)aw, dx/L oW, dx)

behaves as (v, v2)— (4, ) e 0(S), (vi,v;)eX\S. By the continuity of the
semiflow 7, w, and w, will be uniformly close to v, and v,, respectively, for >0
sufficiently small. Hence, if we can show that the expression.

U*(Uhvz):ﬁl(fn[o'“fl(x: 0, i) + fi(x, vy, va)J¢hivs dx/LJ/hUl dx)

+ ﬁz(L [o2 = folx, i1, 0) + fo(x, v, Vz)y]'/’zvz dx/L ‘lllevz dx) (513)

always has a positive liminf as (v, v2)— (13, 4;) € 0(S), then by (5.9), (5.10),
(5.11) and (5.12) we have a(t, (4, u))>1 for (u,, u;) ew(S) and ¢ sufﬁcxently
small. If we let (v, v,)— (0, 0), then

o~ filx 0, i) + filx, vy, Uz)“> o= filx, 0, i) + fix, O, 0) =07y,
since fi(x, 0, O) fitx, 0, ;) by hypothe51s Also,

— £, @1, 0) + f(x, v1, v2) > 02— f(x, &1, 0) + f(x, 0, 0).
If we choose B, and f3, so that

Bioy + Baoy + B :gg [fo(x, 0, 0) — folx, @71, 0)] > 035>0, (5.14)
then ' ‘

lim inf U*(Ul, 'Uz) = o3> 0.
(vy,v2)—(0,0)
(v, u)e X\S

As (Ul: 'Uz)"‘* (l:l-l, 0),0’] —f(x, O, ﬁz) +f1(x, Vi, Uz)-—> [425] —ﬁ(x, O, 112) +f](x, 121, 0),
so that

L [0 = 5, 0, &) + fi(t, vy, v2) vy dx—

[ 101~ 6,0, @) + £, 1, Olsin ds. (515)
Also ?

J- f](x, 171., 0)&/11171 dx = —-[- l/llpbl Ail-l dx
Q Q .
= _j Uy Ay dx
. Q N

—-[ @ -f 0@, (516)
Q L

so that as (v, v2)— (i, 0), [qloy—fi(x, 0,i) + fi(x, vy, va)]¢ v, — 0. Since
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Ta vy dx— [q Uit dx >0, the first ratio of integrals in (5.13) has limit 0 as
(vy, v2)—> (iiy, 0). For the second ratio of integrals, note that as (v, v,)— (i, 0),
o, — folx, iy, 0) + f(x, vi, v2) = 072, so that for (vy, v,) sufficiently near (iz;, 0) but
(v1, v2) € X \S we have that ratio bounded below by o,/2. Hence we have

liminf o*(v,, v;) = B,0,/2>0.
(vy,v2)->(i71,0)
(v, v)e X\S

As (vy, v;)— (0, iI,), computations similar to (5.15) and (5.16) show that
J o2~ folx, @y, 0) + fo(x, v1, v2)]Yv,— 0, and since oy~ fi(x, 0, itz) + folx, vy,
v,)— o, the first ratio of integrals in (5.13) is bounded below by /2 for
(vy, v,) near (0, ir;). Hence

lim inf U'*(Ul, vz) = B]U’}/Z >0.
(w1,v2)—(0,i7z)
(v, 12)e X\S

Thus

liminf o*(vy, v2)>0,
(v1,vz)—rw(S)
(v u)e X\S

so that a(t, (u;, uz))>1 for (u,u,)ew(S) and >0 sufficiently small, and
permanence follows from the abstract results of the previous section. [l

The case of Neumann conditions is very similar to that of Dirichlet conditions,
at least in the construction of average Lyapunov functions. An analogue of
Lemma 5.1 for the Neumann case is available under the same hypotheses, as
previously noted, except that the condition u <1/A{(f(x, 0, 0)) may be omitted if
Jaf(x,0,0)dx=0.

THEOREM 5.5. Suppose that fi(x, u;, u,) and fo(x, uy, uy) are C* in all arguments
and satisfy the hypotheses of Lemmas 4.1 and 4.3, and that fi(x,u;,0) and
f(x, 0, uy) satisfy the-hypotheses of Lemma 5.1. If [qfi(x,0,0)dx <0, then
suppose p; <1/Ain(fi(x, 0, 0)) where Ain(fi(x,0,0)) is the principal positive
eigenvalue of (5.1) under Neumann boundary conditions. Let it,y and i,y be the
unique positive solutions of (5.4) and (5.5) under Neumann conditions, and let oy
and o,y then denote the largest eigenvalues of (5.6) and (5.7) under Neumann
conditions. Suppose that fi(x,0,0)Zfi(x,0, i,n). The semiflow generated on
[C(Q)]? by (2.1) with Neumann boundary conditions is permanent if oy and oy
are both positive.

Remarks 5.6. The case of Neumann conditions can be treated somewhat
differently to that of Dirichlet conditions, since solutions will be strictly positive
on Q. A different approach to permanence in the Neumann case is treated in [26].
Theorem 5.5 is proved exactly as Theorem 5.3 with the only changes being the
replacement of solutions, eigenvalues, eigenfunctions for Dirichlet conditions with
the corresponding ones for Neumann conditions. We could also impose Dirichlet
conditions on one species and Neumann on the other.
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Theorems 5.3 and 5.5 improve known results on the asymptotic behaviour of
solutions to the classical Lotka—Volterra competition system with diffusion:
1= py Auy + (my = byuy — biag)uy,

(5.17)
Uz = by Aty + (Mg — byytty — bapitr)u,.

The permanence criteria of Theorem 5.3 coincide with those for the presence of a
coexistence equilibrium given in [4, 9] in the case of relatively weak competition.
Of course, Theorem 5.3 also applies to the predator-prey model

Uy = py Auy + (my — byyuy = biatiy)us,

| (5.18)
Uy =y Al + (Mg + byytty — boyuir)us,

and to more general models. We shall return to the connections between
permanence and coexistence states in the next section.

The case of a predator-prey miodel with no self-limitation on the predator
requires a slightly different analysis, since there will be no positive steady state for
the predator density in the absence of prey.

THEOREM 5.7. Suppose that fi(x, uy, u,) and fy(x, uy, u,) are C* and satisfy the
hypotheses of Lemmas 4.1 and 4.5, that fi(x, u,, 0) satisfies the hypotheses of
Lemma 5.1 with p, <1/A{(fi(x, 0, 0)), and that f(x, 0, u;) =0 for u,=0. Let o
and , be the largest eigenvalue and corresponding positive ezgenfunctzon of ‘

Ay + fi(x, 0,0)¢ = o mQ
' =0 ondQ,

and recall that o, and y, are the largest eigenvalue and corresponding eigenfunc-
tion of (5.7). The semiflow on [CYQ)]* generated by (4.1) with Dirichlet boundary
conditions is permanent if o, and o, are both positive.

Discussion. The proof is similar to that of Theorem 5.3. Dissipativity follows
from Lemma 4.5. The w-limit set of the semiflow restricted to the boundary of the
positive cone consists of (0,0) and (iZ;, 0) in this case, and the average Lyapunov

function is
P(vy,vp) = (L oy, dx) '(L v, dx) 2-

If we proceed as in the proof of Theorem 5.3, the analysis near (0, 0) imposes the
condition B,0 + B.0, + B, igf [£(x, 0, 0) — f(x, iz, 0)] > 0 while the analysis near

(&K;, 0) requires only that B,0,>0. Clearly both conditions can be satisfied for
some positive B1, B2 if oy and o, are positive.

As in the case of Theorem 5.3, Theorem 5 7 extends directly to the case of
Neumann boundary conditions:

THEOREM 5.8. Suppose that the hypotheses of Theorem 5.7 are satisfied when the
steady state it, and eigenvalues oy and o are taken with respect to Neumann rather
than Dirichler boundary - conditions. Then the system (4.1) with Neumann
boundary conditions generates a semiflow on [C(Q)]* which is permanent.
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Remark 5.9. Theorems 5.7 and 5.8 give permanence crlterla for systems
including the predator—prey system

Uy = py Auy + (a — buy — cuz)uy,

5.19
2= Mo Aty + (—d + eu)u,, ( )

studied in [16], to which Theorems 5.3 and 5.5 do not apply.

6. The existence of a stationary state

In recent years there has been considerable mathematical interest in stationary
coexistence states for two species models with diffusion, coexistence here being
interpreted as meamng that the density of neither species is- 1dent1cally zero. The
object of this section is to show that, for systems exhibiting permanence, such a
state always exists. The proof of this result is a straightforward application of an
asymptotic fixed point theorem to the semiflow. It follows from this simple
observation that many of the standard existence results are immediately re-
coverable, and indeed that in some circumstances existence may be proved for
very much more general reaction terms with spatial variation included and with
less stringent conditions on the sign of their partial derivatives. For a related
approach to a model representing delay effects, see [25].

It is clearly not appropriate to review here the rather extensive literature on
coexistence states, and we restrict ourselves to a brief outline, referring the reader
who requires more information to the papers cited for extensive further
references. We first remark that the problem with zero Neumann conditions is
relatively straightforward and has been largely settled in [6] and [15]. We shall not
refer to this further and shall only consider the case with zero Dirichlet
conditions, noting that more general boundary conditions could be treated by
extending the permanence results for such conditions.

It is probably fair to say that by far the greatest effort has been directed
towards finding sufficient conditions for the existence of coexistence states. One
of the principal methods for tackling this problem is based on bifurcation
techniques, typical references being [4], [5] and [9]. A somewhat different
approach based on an index method is given by [13], [14] and extended by [31].
For an approximate approach for large domains, see [30]. An attack based on
sub- and supersolutions is described in [12]. This method is only applicable to
cases where the semiflows are suitably ordered, which probably limits it to
competing species or mutualistic cases, and excludes predator-prey examples.
Finally, we may mention that uniqueness and stability for competing species
problems are treated in [10]. '

The proof of the existence of a stationary coexistence state will be based on the
asymptotic Schaunder fixed point theorem (see [38]), which we quote next for
ease of reference.

THeorReEM 6.1. Let U be a non-empty, bounded, open, convex subset of the
Banach space E, and suppose that T: E — E is continuous and compact. Assume
that for some fixed prime p =2, T*U< U for k=p,p +1. Then T has a fixed
point in U.
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THEOREM 6.2. Suppose that zero Dirichlet boundary conditions are imposed and
that the hypotheses of Theorem 5.3 or 5.7 are met, so that dissipativity and
permanence hold for (4.1). Then the system (4.1) has a stationary coexistence state, -
that is, an equilibrium solution with neither component identically zero.

Remark 6.3. Systems (5.17)-(5.19) are some specific examples of systems to
which Theorem 6.2 applies under appropriate conditions on the parameters.

Proof of Theorem 6.2. Take E = C}Q). Strictly speaking, our permanence
results only apply to C}.(Q), but it is clear that the system of partial differential
equations may easxly be extended by defining a smooth continuation of the
reaction terms which is zero outside an g-neighbourhood of C),(Q).

In Lemma 3.6, take y = ¢/2, ¥ =24, and set

U= {u e CHQ): ye(x) <u(x) < ye(x) for xeQ

andy-~(x)>@—'( )>'y——(x)forxea£2 z-—l 2,... }

Clearly U is strongly bounded, open and convex. Choose any t>0 and set
T; = (-, t). Then T, is compact (by Theorem 3.3) and continuous. Furthermore, as
U is strongly bounded, by the definition of global attractor relative to strongly
bounded sets, Theorem 2.3 and Lemma 3.6, there is a k, such that T*U < U for
k = ky. It follows by choosing any prime p >k, that 7; has a fixed point. As this
holds for every ¢ >0, the existence of a fixed point of z follows on applying [3,
Lemma 3.7] on the closure of z(T, [1, )), which is compact by Theorem 3.3.

As an apphcatmn, let us consider a predator—prey problem discussed in [4], for
which the governing equations are

d, Au+u(a, ~ byju — cyv) =0,
d, Av +v(a; — byv + cou) =0,

with zero Dirichlet conditions on §Q. Suppose that by, ¢, by, ¢;>0 and
a,>M\d,, where A; is the smallest eigenvalue of —A with zero Dirichlet
conditions. We take for simplicity a,<0, although this restriction may be
weakened under appropriate conditions. Let & be the (unique) non-zero solution
of ‘

dl AII+L7(01 ““b]lj) =0 in Q,
Z=0 on 9.

Then by Theorem 5.7 permanence holds and there is a stationary coexistence
state (by Theorem 6.2) if the smallest eigenvalue A of the problem

dy Av +v(a, +cit) = Av inQ
v=0 on 99,

is greater than zero. This is essentially the existence result [4, Theorem 3.5(i)].
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One may recover in a similar manner the existence part of [30, Theorem 1]. We
note that Theorem 5.7 applies in much more general situations than the above,
and allows less restrictive conditions on the reaction terms than often assumed,
with in particular spatial variation allowed. Similar remarks apply to competing
species problems. : .

We conclude with a general comment on the role of coexistence states in a
biological context. On its own the existence of a coexistence state is probably of
somewhat limited biological interest (though of considerable mathematical
interest) as the state may not be stable nor indeed unique. However, we see that
in a rather wide range of problems the conditions which have been given for the
existence of coexistence states are in fact enough to ensure a considerably
stronger condition, that of permanence, which is of course a type of stability
condition. One may perhaps speculate then that the standard conditions for
existence on its own could in many cases be weakened. There is some discussion
of a necessary and sufficient condition in [14], but this condition is acknowledged
there to be ‘rather implicit’, and clearly much remains to be done on this
problem.

7. Summary and conclusions

The results of the preceding sections span a wide range of levels of abstraction,
technicality and applicability. The purpose of this section is to put some of them
into perspective so that the.whole panorama can be viewed and interpreted. The
basic point is that our approach to coexistence provides a method which is quite
general in applicability but can also be very precise in its conclusions in specific
cases.

The first significant feature of our conditions for permanence (for example in

~ Theorems 5.3, 5.5, 5.7 and 5.8) is that they do not require any special assumptions

about the monotonicity of the interaction terms, uniqueness of coexistence states,
the existence of a global. Lyapunov function, or other such properties. The
examples noted in the paper are mainly drawn from classical Lotka-Volterra
models, but the methods would apply equally well to a system such as

Wy = oy Auy + (g — by — biuz)u,,
Uy = g Aty + (M5 + bouty — Cu% = byux)u,,

in which the first species acts as prey for the second at low densities but competes
with it at higher densities. Much more complicated interactions or functional
forms could also be used. Such an increase in generality would be useless from an
applied viewpoint if it were accompanied by a corresponding loss of precision, but
such is not the case here.

The second major feature of our approach is that where it overlaps with other
techniques it often gives similar or better results. A specific example is the
problem of coexistence states discussed in Section 6. We find that our approach
yields the existence of a coexistence state under the same hypotheses as used in
other investigations, but also provides the stronger conclusion that any initial
distribution of populations with both species present can be expected to display
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long-term coexistence. Since even local stability of the coexistence state is difficult
to establish (and may not always hold), and in any case does not suffice to ensure
Iong—term coexistence with arbitrary initial data, our result based on permanence
is a genuine improvement on what was known previously.

A third unportant aspect of our approach is that it produces conditions that can
be interpreted in natural and direct ways in terms of environmental conditions
and parameters describing the strength of interactions. Our conditions for
permanence are cast as inequalities on the eigenvalues of a class of problems
which have been widely studied. The dependence of the eigenvalues on the
geometry of the underlying domain and on the coefficients in the problem is
reasonably well understood, they can be computed explicitly in simple cases and
there is a huge literature available on their estimation, numerical approximation,
qualitative properties and so on. Eigenvalue-based criteria for coexistence can
then be used to reach biological conclusions that have been difficult to deduce
through other methods.

Our fourth and final observation is that combining the ‘dynamlcs idea of
permanence with the ‘static’ idea of studying geometric problems via eigenvalues,
we have been able to treat questions about coexistence which would be difficult if
not impossible to solve using only one of those viewpoints. The whole is evidently
more than the sum of its parts and should provide a strong but flexible tool for
studying spatial effects on interacting populations.
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